Transition metal dichalcogenide monolayers (TMDC-MLs) are a promising material class for next generation optoelectronic devices. Their van-der-Waals nature enables the easy stacking with other two-dimensional materials, e.g. insulators, metals or ferromagnets. Due to their ultimate thinness, the intrinsic properties of TMDC-MLs are highly sensitive to their direct environment. In our work, we examine the effect of a dielectric environment on the band gaps and binding energies of transition metal diselenide monolayers. Furthermore, we study the rich excitonic physics of WSe2 MLs in a gate-tunable device, which gives access to multi-particle excitonic complexes such as trions, biexcitons, charged biexcitons, spin-forbidden dark excitons and spin-forbidden dark trions. As an application, we demonstrate the generation of radially polarized light from spin-forbidden dark states in WSe2 MLs.