Theory of electron dynamics and THz gain in nanowire-based quantum cascade laser

Thomas Grange

Walter Schottky Institut, Technische Universität München

Friday, December 10th, 2010 14:00

Technische Universität Wien Seminarraum Institut für Photonik, Gußhausstrasse 27, 1040 Wien, Raum CBEG02

In terahertz (THz) quantum cascade laser (QCL), fundamental limitations arise from the efficient non-radiative scattering processes that are accompanied with optical phonon emission. As suggested by recent demonstration of long THz excitation lifetimes in self-assembled quantum dots [1], a possible way to circumvent these limitations would be to use an additional lateral confinement, leading to a 3-dimensional quantisation of the electron motion in the device.

Here I will present the theory and simulation of electron transport and optical gain in QCLs made of nanowires with axial superlattice heterostructures. Using the non-equilibrium green function (NEGF) formalism [2], we take into account in a fully quantum way the relevant scattering mechanisms that have been evidenced for either 0-D or 2-D systems. The QCL properties are found to depend dramatically on the nanowire diameter. The lateral confinement allows a new way of controlling the quantum cascade in the growth direction, allowing for lower current threshold, enhanced THz gain, and operation up to higher temperature that in usual planar QCLs.


Host: K. Unterrainer
contact: barbara.weber@tuwien.ac.at